最后修改时间:2023-12-24 15:20:40
责任人:Vtea
通义千问模型支持用户以文本形式的指令(prompt)以及不定轮次的对话历史(history)作为输入,并基于这些信息生成回复作为输出。在这一过程中,文本将被转换为语言模型可以处理的token序列。Token是模型用来表示自然语言文本的基本单位,可以直观地理解为“字”或“词”。对于中文文本来说,1个token通常对应一个汉字;对于英文文本来说,1个token通常对应3至4个字母或1个单词。例如,中文文本“你好,我是通义千问”会被转换成序列['你', '好', ',', '我', '是', '通', '义', '千', '问'],而英文文本"Nice to meet you."则会被转换成['Nice', ' to', ' meet', ' you', '.']。由于模型调用的计算量与token序列长度相关,输入或输出token数量越多,模型的计算时间越长,我们将根据模型输入和输出的token数量计费。可以从API返回结果的usage字段中了解到您每次调用时使用的token数量。您也可以使用Token计算器或者调用Token计算API来预估文本对应的token数量。